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Abstract: This paper introduces an innovative cross-modal spatial layout generation approach that leverages 
AI-agents to seamlessly integrate graphs, textual descriptions, and geometric boundary constraints for the 
creation of 3D room layouts. The proposed method utilizes a unique agent-based framework that incorporates 
large language models (LLM) and graph neural networks (GNN) to process and fuse multimodal inputs, al-
lowing for a more comprehensive and flexible design process. By combining textual descriptions with 
boundary constraints into room feature embedding, the method enhances the semantic consistency and prac-
ticality of the generated layouts. Compared to the previous single-modal generative models, the experimental 
results demonstrate the method's effectiveness in accurately reconstructing room layouts and adapting to us-
er-defined changes, showcasing its potential to revolutionize the field of architectural design by enabling the 
efficient integration of AI-agents and cross-modal data processing. Overall, this paper presents a significant 
step forward in the development of intelligent, adaptable, and user-centric tools for 3D spatial layout genera-
tion. 
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1 Introduction 

The three-dimensional (3D) spatial layout in architectural design is a complex task, due to the multiple objec-
tives that influence the overall performance of the design outcome. Therefore, the spatial layout process in 
conventional architectural design is a dynamic, iterative, and time-consuming endeavour, constantly adjusted 
until the result with the best overall performance1. Location anchors (such as bubble diagrams), natural lan-
guage descriptions of spatial attributes, and expected boundary of the design domain are extremely useful in-
formation in conventional design as essential reasoning information during the design process3. Fusing these 
different types of information is one of the challenges faced by AI based technology. 

2 Related Works 

In the field of artificial intelligence, cross-modal typically refers to the ability of machine learning models to 
process and understand different types of data. This includes tasks like converting visual information (imag-
es) into text descriptions or transforming text into 3D models. Advances in cross-modal AI technologies like 
GANs, ChatGPT, and Codex2 have opened possibilities for architectural design by incorporating other modal 
inputs that align better with conventional design practices. Cross-modal technologies can integrate textual 
descriptions, 2D images, and 3D data to make decisions for complex tasks and generate more accurate 3D 
models11. This cross-modal approach can provide more convenient, efficient, and time-saving innovative po-
tential for room layout design, making it more in line with the habits of conventional design. 

Text-to-3D generation is a crucial cross-modal technology in spatial generation methods. CG3D adopts a 
two-stage approach to generate 3D from text, involving structured relationship generation and physics-based 
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optimization, aiming to address issues like text-controlled multi-object layouts, physical realism of scene 
compositions, and semantic and physical consistency12. MeshGPT generates triangle meshes directly as se-
quences of triangles, encoding triangle embeddings into latent quantized embeddings through a graph convo-
lutional encoder and ResNet decoder, utilizing GPT to produce high-quality triangle sequences10. 3DMIT en-
hances LLMs' understanding of 3D scenes through end-to-end fine-tuning, injecting 3D information directly 
into LLMs and utilizing a 3D perceiver architecture with multiple encoders to extract and align global and 
detailed features in 3D scenes6. GALA3D utilizes large language models to guide initial layouts, then incor-
porates conditional diffusion priors to obtain more realistic and accurate real-world spatial layouts, ensuring 
spatial distribution and geometric consistency through adaptive geometry control and optimizing multi-object 
interactions in 3D scenes16. Text2Room proposes a method to generate complete, texture-rich 3D indoor sce-
ne meshes from textual inputs, first creating indoor layouts and furniture, then filling in gaps with 3D geome-
try, ensuring seamless and natural textures through depth alignment and mesh fusion4. However, these meth-
ods primarily record 3D models as meshes, with rendering as their primary task, lacking spatial topological 
relationships necessary for dynamic spatial layout design processes and adapting to architects' flexible design 
adjustments. 

The topological relationships of subspaces are crucial for spatial plan generation methods. Data-driven ap-
proaches have initially demonstrated the effectiveness and controllability of architectural space generation. 
House-GAN++ is an intelligent framework for generating and optimizing floor plan layouts, representing 
room layouts as graphs, with nodes representing rooms and edges representing relationships between them, 
generating layouts based on input conditions like room count, types, and areas9. Zheng and Petzold decouple 
topological and geometric predictions of room layouts, using subgraph neural networks to predict room to-
pologies and combining neural-guided plan sketching to generate layouts with reasonable topologies13. How-
ever, these methods focus primarily on data-driven generation from graphs to graphs, lacking other modal in-
puts, limiting the flexibility of on-demand adjustments during room generation. Spatial topological graph 
relationships overly abstract spatial requirements, whereas other modalities, such as boundary constraints or 
texts can more precisely store expected detailed information necessary for generation. 

Boundary constraints are a type of geometric modality input that represents the design domain desired by the 
designer. Graph neural networks (GNN) can effectively integrate boundary constraints with topological con-
straints. Graph2Plan integrates user-in-the-loop design constraints based on given boundaries and bubble 
graphs. The system incorporates a retrieve-and-adjust paradigm, utilizes a deep neural network for floorplan 
generation, and includes a post-processing step for aligning room boundaries and vectorizing the floorplan5. 
Building-GNN emphasizes the controllability of the generative process that meets boundary conditions. De-
signers can traditionally define volumetric boundaries for the GNN model to infer volumetric details in 
space. Additionally, this method provides a flexible interactive design interface, realized through the GH-
Python framework on the Rhino modelling platform, enabling architects to engage in a feedback loop with 
AI14. Utilizing building outlines and specified points as inputs, Graph-BIM is introduced, which encodes 
BIM data into graph structures tailored for AI learning, and helps AI understand and learn BIM data, ena-
bling the generation of controllable 3D building models that meet spatial boundary constraints7. The results 
indicate that GNN models excel at generating vector models. Thus, we also adopted the previously advanta-
geous GNN generation framework to explore architectural generation. 

However, a common challenge with these methods is the need for human understanding to convert require-
ments into input features, as AI is unable to transform requirements into the features of input models across 
different modalities. For instance, in Building-GNN, architects cannot input text to modify the desired out-
comes. In contrast, AI-agent technologies like the framework proposed by Building-Agent can intelligently 
convert textual requirements into 3D structured data, thereby reasoning to generate 3D layouts15. This ena-
bles us to use agents for data-driven feature engineering to inspire further development. 

We propose a cross-modal spatial layout generation method that takes graph diagrams, such as bubble dia-
grams, and textual descriptions as inputs. This method utilizes an LLM-based agent framework and GNN to 
generate semantic 3D spatial layouts that meet boundary requirements and enables textual input to adjust 
room layout details during the generation process (Fig. 1). The way AI-agent integrates different modal in-
formation resembles the flexible process of conventional room layout design. 



  

 
Fig. 1 Application of Room-Agent in architectural workflow 

The contribution of this study lies in a cross-modal feature fusion method: utilizing various modalities such 
as spatial topological maps of mouse clicks, constraint boundaries, and text as input objects. Through the in-
telligent integration enabled by the AI-agent framework, this approach allows data-driven models to generate 
detailed 3D models that meet the dynamic evaluation needs of architects while conforming to the intricate 
layout features of datasets. Compared to earlier single-modal AI models like House-GAN, the inclusion of 
textual input enhances the model's ability for dynamic intelligent generation. Furthermore, the control 
through boundary constraints and graph anchoring ensures its potential for practical application in real pro-
jects. 

3 Methodology 

As shown in Fig. 2, the framework of the Room-Agent method is divided into three parts: 1) input represen-
tation, 2) Agent-driven feature engineering, and 3) GNN generation model. We initially employ graphs, text, 
and 3D boundaries as inputs, followed by utilizing multiple AI agents to facilitate the feature engineering 
process between the input and the GNN generation model. Specifically, the encoding unifies the require-
ments of different modalities into the features of graph nodes and edges. Finally, these features are fed into a 
trained GNN model, outputting the node and edge features of the graph, which are transformed into a new 
three-dimensional room layout. Additionally, text, anchor points, and boundaries can be used concurrently in 
the generation process for flexible adjustments to the layout, constituting an end-to-end modification process. 

In our approach, the bubble diagram and building boundary are transformed into text using AI agents that au-
tomatically reads and processes data formats to meet the requirements of structured data (Fig. 3). The graph 
and boundary vector information are converted into structured text output for accurate processing and effi-
cient use of diverse data by another specialized agent that handles graph and boundary data. The "bubble dia-
gram to text" agent function demonstrates how to convert a bubble diagram that represents rooms with coor-
dinates and areas into a text format, while the "building boundary to text" agent function illustrates the 
method of translating building boundaries into text. Based on these structured data, room features first maps 
the coordinates of different room types within the building boundary, then colours the potential diffusion are-
as of functional rooms using Signed Distance Function (SDF), overlaying the diffusion area with a grid for 
evaluation, and calculates the influence probability of graph and text inputs on the properties of the final lay-
out nodes, achieving feature embedding as input for AI generative models. By integrating features from dif-
ferent modalities into unified embedded features, AI agents provide more comprehensive and accurate inputs 
for generative models.  



  

 
Fig. 2 Room-Agent framework of converting graph, boundary, and text to 3D detailed model 

 
Fig. 3 LLM functions converting graph, boundary, and text to room feature embedding 



  

GNN is employed as a generative model in this approach. Fig. 4 demonstrates the details of the training ar-
chitecture and generative process of RoomGNN. Fig. 5 shows how graphs represent the details of 3D models. 
The model training process inputs node data encoded based on room feature embedding, while the model in-
put consists of edge attributes. Loss is calculated by comparing the predicted results with the edge categories 
in the dataset layout, enabling the GNN model to learn the features between node inputs and spatial layouts, 
thus predicting the details of the spatial layout, as shown in the input and output sections of Fig. 5. Once the 
data training is completed, the feature embedding derived from user input is fed into the trained model to 
predict models. From the test dataset, we can observe the model's generalization and generative capability. 
Since we have set corresponding 3D components to different edge types, we can directly obtain the 3D mod-
el of the room layout. 

 
Fig. 4 Room-GNN dataset and graph encoding method 

Fig. 5 illustrates the details of how a 3D model is encoded into a graph data structure that AI can understand. 
In simple terms, nodes represent spatial grids, while edges indicate the categories of walls. The node features 
include properties such as coordinates, boundary types, and room categories. Edges are represented by an ad-
jacency matrix defined by endpoints, and edge types are encoded using a one-hot encoding scheme to repre-
sent various wall types. This encoding method has been shown in previous studies  to be superior to other en-
coding techniques for improving AI predictions of layout details8. During training, edge types are used for 
cross-entropy loss calculations, where the loss function reflects the discrepancies in spatial layout details. 
Therefore, a reduction in loss directly indicates effective learning. 

 
Fig. 5 The encoding method for the spatial layout generation 

As shown in Fig. 6, the AI model of RoomGNN is trained using the Housegan-Grid dataset, which is a modi-
fied version of the Housegan dataset. This dataset samples walls within a composite grid layout, offering pre-
cise delineation of room functions and various wall construction types. 



  

 
Fig. 6 Dataset used in Room-Agent 

4 Experiment and Result 

The results of RoomGNN on the test set, compared to the ground truth, demonstrate excellent learning capa-
bility, enabling the inference of complete room layouts from simplified room divisions. The average loss for 
the model's graph reconstruction results on the test set is 0.41 (Fig. 7(b)), as the loss itself represents the de-
viation of each layout-generating element from the dataset, showing its ability to effectively capture features 
related to spatial layouts within the dataset. The loss values of the generated results in Fig. 
7(a)(1)(3)(4)(8)(9)(11) are significantly lower than the average, with the minimum loss at 0.207, indicating 
an almost complete reconstruction of the original spatial layout. This showcases RoomGNN's outstanding 
reasoning ability in translating room functions into detailed spatial layouts. However, when faced with com-
plex architectural boundaries, the loss of RoomGNN's reconstructed spatial layouts tends to be higher. Nota-
bly, in Fig. 7(a)(2)(5)(6)(10)(12), the maximum loss reaches 0.565. Some reconstruction results exhibit addi-
tional walls both inside and outside the architectural boundaries, affecting the usability of the rooms, and 
some windowed exterior walls were not accurately predicted. Overall, RoomGNN's reconstruction perfor-
mance on the test set highlights the effectiveness of this room-encoding approach, successfully learning lay-
out logics such as wall types and spatial divisions. 

 
Fig. 7 Evaluation of Room GNN graph reconstruction result based on the test dataset 



  

Fig. 8 demonstrates the generated room layouts of Room-Agent from various functional bubble diagrams and 
building boundary constraints. We analyzed the results using two metrics: Room Accessibility Index (RAI) 
and Room Enclosure Index (REI). In the generated results, the RAI is above 50% for all cases, indicating 
high accessibility. The first bubble diagram mapped to three building boundary layouts shows the highest 
room accessibility, with Figs. 8(1) reaching 100%. In terms of the REI, the spatial layouts show ideal room 
enclosure. For the third bubble diagram's generated results, Figs. 8(3) and (6) have an REI of 100%, indicat-
ing efficient room circulation. However, in Figs. 8(3) and (6), some wall types were not well predicted, such 
as multiple front doors in the entrance hall space. The second bubble diagram's overall generated results have 
lower RAI and REI indices. Figs. 8(5) and (8) have an RAI of 57%, with nearly half of the rooms lacking 
door connections. Fig. 8(8) has the lowest REI at 43%, where two living rooms lack outer boundaries and in-
ternal partitions, and the kitchen and storage room have become a single space without wall divisions. Over-
all, Room-Agent can effectively generate room layouts with detailed spatial divisions and high accessibility 
based on the provided functional bubble diagrams and building boundary constraints. However, there exists 
space for improvement in predicting wall types and handling layouts for spaces with special functions. These 
findings provide direction for further optimization of Room-Agent. 

 
Fig. 8 Evaluation of Room-Agent generated result based on different bubble diagram and building boundary 

Fig. 9 shows the experimental results of modifying the spatial size and layout relationships through textual 
input. In the first modification, Room-Agent successfully met the user's request to reduce the bathroom area 
and optimize the bedroom into a rectangular layout. The modified three-dimensional spatial layout exhibited 
a high room enclosure rate and accessibility. In the second modification, Room-Agent repositioned the kitch-
en as requested, with the closet occupying the rectangular space in the lower left corner. The shape of each 
room in the current design is almost square, except shapes of the bedroom and bathroom. The LLM within 
Room-Agent, functioning as a probabilistic model, generated new layout results causing the bedroom's shape 
to become irregular, meaning a lack of precise control. These results suggest that Room-Agent can compre-
hend textual requirements and translate them into spatial layout outcomes, while also introducing some addi-
tional variations in the layout results due to the probabilistic nature of the large language model. 

Compared to existing AI models, Room-Agent can define specific rooms and wall partitions within those 
rooms based on the constraints of the building boundary (Fig. 10). In contrast, previous generative AI models 
relied solely on abstract functional bubble diagrams, making it difficult to control the shape of the generated 
spatial layouts accurately. Room-Agent possesses the ability to accurately control the spatial layout genera-
tion based on the bubble diagram and the building boundaries. 



  

 
Fig. 9 Refining the room layout according user’s requirement through natural language input 

 
Fig. 10 Comparison of results between Room-Agent and existing AI models 

5 Limitation and Future Work 

Spatial layouts generated by the Room-Agent are constrained by the precision and diversity of the dataset. 
Experimental results indicate that some rooms fail to be with enclosed spaces, suggesting that the node fea-
tures defining the outer boundaries need further refinement and diversification for training. Therefore, future 
improvements should focus on enhancing the accuracy and increasing the diversity of the dataset while 
providing more detailed features of each room. Additionally, developing adaptive adjustment methods to ac-
commodate complex boundary constraints through advanced user feedback mechanism is another challeng-
ing task. Compared to traditional parameter control methods, using textual input to control architectural lay-
outs demonstrates clear advantages in efficiency and simplicity. However, we also observe that there may be 
instability in the outputs of large language models when generating spatial layouts. This could lead the model 
to modify room layouts without fully understanding the user's needs, thus affecting the output. Introducing 
more functional components within LLM that are suitable for spatial layout methods will be an important ar-
ea for further work. The rule-based functions and the trained GNN model embedded in Room-Agent have al-
ready shown their diverse possibilities. To further enhance its ability to handle complex tasks, future work 
could consider using Room-Agent as a backbone, connecting various AI models across modalities, including 
video and voice inputs. Thus, Room-Agent could not only manage the design of architectural spatial layouts 
but also provide users with a more comprehensive and personalized design service through the integration of 
multimodal data. 

6 Conclusions 

This study proposes a novel cross-modal 3D room layout generation method aimed at addressing the limita-
tions of traditional and current AI-driven approaches. By integrating graph-based representations (such as 
bubble diagrams) and textual descriptions into an LLM-based agent framework, combined with GNN, our 
method can dynamically and flexibly generate 3D spatial layouts that meet architectural design requirements. 
The incorporation of text input not only enhances the model’s ability to generate intelligent and semantically 
consistent layouts but also allows for real-time adjustments during the generation process as needed. Bounda-



  

ry constraints further ensure the practicality of the generated layouts in real-world applications. Experimental 
results show that our method can accurately reconstruct room layouts, particularly in scenarios with clear 
spatial boundaries and functional divisions. Although challenges remain when handling complex boundary 
conditions, the Room-Agent system demonstrates potential in adapting to a wide range of design require-
ments through iterative refinement based on user input. The successful application of cross-modal (text, 
graphics, and spatial data) integration highlights the potential of our approach to bridge the gap between AI-
generated designs and conventional architectural practices, providing valuable insights for developing more 
efficient, flexible, and designer-friendly tools in the field of architectural design. 
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