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Abstract: The integration of artificial intelligence (AI) in architectural design, especially for generating floor 
plans, can greatly streamline the process. However, most AI-generated plans focus on form and spatial layout, 
often neglecting crucial performance evaluations because they are presented as images without the necessary 
geometric and physical properties for effective simulation. To address this limitation, we propose a novel ap-
proach that combines diffusion models with generative adversarial networks (GANs) for generating and eval-
uating floor plans. We fine-tuned a Low-Rank Adaptation (LoRA) model for creating residential floor plans, 
while a GAN quickly predicts daylighting performance. Our results show that the diffusion model generates a 
more varied set of floor plans compared to the training set. The GAN accurately assesses daylighting perfor-
mance, with deviations from the ground truth not exceeding 5%, achieving a mean squared error (MSE) of 4.2 
and a structural similarity index (SSIM) of 0.98. Additionally, it operates 267 times faster than traditional 
methods. This approach equips architects with a reliable tool for efficient early-stage design decisions, enhanc-
ing AI-driven workflows. 

Keywords: Automated floor plan, Diffusion model, Generative design, Conditional generative adversarial net-
work 

1 Introduction 

1.1 Research Background 

The use of automated tools in architectural floor plan generation, especially for residential design, is gaining 
traction due to their ability to enhance efficiency by reducing repetitive tasks and minimizing trial and error in 
the design process (20). Automated floor plan generation typically utilizes two main methods: rule-based and 
learning-based approaches (15). Rule-based methods rely on algorithmic constraints derived from design prin-
ciples, using predefined generative rules, shape grammar (18), and advanced techniques like agent-based mod-
eling (1,5) and graph theory (2,12). However, these often require architects to possess specialized skills in 
mathematics and programming, creating barriers to widespread adoption. In contrast, learning-based methods 
have gained traction due to their accessibility and ease of implementation, allowing architects to bypass com-
plex algorithms by extracting features from existing data. The rise of machine learning and AI has led to data-
driven approaches that learn from extensive design datasets, resulting in diverse and creative floor plans. Tech-
niques like Generative Adversarial Networks (GANs) (4), supervised learning with Auto-Encoder refinement 
(21), and Graph Neural Networks (GNNs) (14) exemplify this trend, making it increasingly common for ar-
chitects to integrate AI tools into their workflows for efficient floor plan generation. 

Despite advancements in automating floor plan generation, the evaluation of the generated designs is still 
lacking, particularly in the context of learning-based approaches. While rule-based methods facilitate the 
straightforward definition and adjustment of design variables for performance optimization(22), learning-based 
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methods often embed these variables within generated images, thereby complicating traditional evaluation 
techniques. This necessitates the use of specialized software for geometric modeling and simulation, which can 
be time-consuming and requires expertise. To address this gap, recent developments in deep learning, particu-
larly with Generative Adversarial Networks (GANs) like pix2pix (10), show promise in converting generated 
images into actionable performance data. 

Nevertheless, the incorporation of performance assessment into the domain of learning-based architectural 
design has been largely neglected. This paper puts forth innovative model architectures and strategies that 
integrate generation with performance evaluation, leveraging diffusion models and conditional GANs (cGANs) 
to enhance the usability of AI-generated floor plans and equip architects with invaluable tools for early-stage 
design decisions. 

1.2 Literature Review 

Diffusion models are emerging as a powerful alternative to GANs in automated floor plan generation. While 
GANs, have been widely used for image generation, diffusion models like Denoising Diffusion Probabilistic 
Models (DDPMs) (8) and Latent Diffusion Models (LDMs) (16) offer enhanced stability and diversity. These 
models can leverage textual descriptions for guided image generation, expanding their applicability. Recent 
studies have demonstrated the potential of diffusion models in architectural design, with innovations like 
HouseDiffusion (17) effectively generating vector floor plans that maintain geometric relationships, and Floor-
planDiffusion (23) allowing multi-conditional inputs to produce designs. However, a key limitation of these 
models is their neglect of environmental performance factors such as daylighting and ventilation, which are 
critical for practical applications in early-stage design. 

In the realm of performance prediction, deep learning methods, particularly Convolutional Neural Networks 
(CNNs) and GANs, have streamlined the assessment of building performance, which is essential for creating 
efficient and sustainable environments. Traditional assessment methods can be complex and time-consuming, 
but DL offers efficient alternatives. For instance, multimodal GANs have reduced computational time for day-
light prediction significantly (11), while CNNs have provided real-time feedback on daylight performance in 
floor plans (6). Additionally, GANs have shown promise in Computational Fluid Dynamics (CFD) for urban 
airflow prediction and optimizing environmental factors(13). Despite these advancements, integrating perfor-
mance evaluation with AI-generated designs remains largely unexplored, presenting an opportunity for further 
research to enhance the efficiency of both design and assessment processes. 

1.3 Goal of This Study 

The goal of this study is to create a streamlined workflow that integrates performance optimization into AI-
generated residential floor plans. This research addresses the complex relationships between design generation 
and environmental performance by combining the generative strengths of diffusion models with the perfor-
mance evaluation capabilities of GANs. The main contribution is an automated system that generates diverse 
and functional floor plans while providing real-time feedback on daylight performance, facilitating rapid design 
iterations. By merging design generation with performance evaluation, this workflow enhances the practicality 
and effectiveness of AI-driven design in architectural practice, allowing for more informed decision-making. 

2 Methodology 

2.1 Overall framework 

The overall framework enables designers to quickly generate and evaluate architectural floor plans using a 
workflow that combines a diffusion model and a conditional GAN (cGAN), specifically the pix2pixHD (19) 
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model. Architects start by creating floor plan layouts from text prompts with the diffusion model. These layouts 
are then analyzed by the cGAN to predict their performance. The process involves two main steps: first, a rule-
based parametric model is developed using Rhino and Grasshopper to create floor plans that adhere to specific 
spatial requirements, generating a dataset for the diffusion model. Second, the Ladybug and Honeybee plug-
ins perform simulations to produce daylight performance data, which, along with the floor plan images, forms 
the training dataset for the pix2pixHD model. 

 
Fig. 1 Overview of the workflow. 

2.2 Floor Plan Generation 

In this study, we use the diffusion model to generate building floor plans. We fine-tune the diffusion model 
using the Low-Rank Adaptation (LoRA) model(9), which is designed to adapt large pretrained models to new 
datasets without requiring full retraining from scratch. To prepare the dataset, we use a parametric algorithm 
to generate floor plans.  

2.2.1 Dataset for Training LoRA 

In the process of generating floor plans, a dataset is required for training. A parametric algorithm was developed 
to generate floor plans as a dataset. The method combines different rooms by applying forces between them 
and using the final balance of forces to create a tightly connected floor plan. As illustrated in Figure 2, the 
creation of a residential floor plan entails considering the number of rooms, the area of each room, and their 
topological relationships. The process comprises two main phases: room generation and force application to 
nodes.  

 
Fig. 2 Generating floorplans through parametric generation algorithm 

Room generation phase: the coordinates (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) of the central node determine each room's initial position. 
Rectangular shapes are created with the central node as the center, representing each room's designated area. 



  

Force application phase: forces are applied to nodes in two steps. First, a global center point (typically the 
origin) is established, and an attractive force clusters all room nodes around this center. Then, varying spring 
forces between room nodes ensure their topological relationships match the design inputs. For instance, dining 
rooms and kitchens typically have strong connections, so the spring forces between their nodes are set very 
high. If these rooms are not adjacent, the spring forces will attempt to move them closer together. The dataset 
generated by the script and used to train LoRA is shown in Table. 1. 

Table. 1 Dataset used to train LoRA 

Type Data 
volume Area/m2 Cases from dataset Text tag 

5_rooms 320 50 

 

floor-
plan_XH; 6_rooms 320 100 

 

7_rooms 320 120 

 

Legend of room 
types 

 

2.2.2 Diffusion Model and LoRA Training 

Diffusion models work by adding Gaussian noise to training data (forward diffusion process) and then learning 
to reverse this process step by step to recover the original data (reverse diffusion process). Diffusion-based 
image generators have seen widespread commercial interest, such as Stable Diffusion and DALL-E. These 
models typically combine diffusion models with other models, such as text-encoders and cross-attention mod-
ules to allow text-conditioned generation. In this study, we use stable diffusion to finish our tasks. 

Low-Rank Adaptation (LoRA) is trained to adapt the weights of Stable Diffusion to learn floor plan layout 
patterns. In deep learning models, weight matrices 𝑊𝑊 are often high-dimensional. For instance, in fully con-
nected layers or convolutional layers, the dimensions of the weight matrices can be very large. Given a weight 
matrix 𝑊𝑊 ∈ ℝ𝑑𝑑×𝑘𝑘, LoRA approximates the weight update ∆𝑊𝑊 as a product of two low-rank matrices: 

 ∆𝑊𝑊 = 𝐴𝐴𝐵𝐵𝑇𝑇 (1) 
where 𝐴𝐴 ∈ ℝ𝑑𝑑×𝑟𝑟 and 𝐵𝐵 ∈ ℝ𝑘𝑘×𝑟𝑟, and 𝑟𝑟 is much smaller than both 𝑑𝑑 and 𝑘𝑘. The updated weight matrix 𝑊𝑊′ is 
then given by: 

 𝑊𝑊′ = 𝑊𝑊 + ∆𝑊𝑊 = 𝑊𝑊 + 𝐴𝐴𝐵𝐵𝑇𝑇 (2) 
The primary objective of LoRA is to minimize the loss function 𝐿𝐿 on the training data, where the model 

parameters are updated using the low-rank adaptation: 
 min

𝐴𝐴,𝐵𝐵
𝐿𝐿 = 𝑀𝑀𝑀𝑀𝑀𝑀�𝑊𝑊𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝐴𝐴𝐵𝐵𝑇𝑇� (3) 

Here, 𝜃𝜃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 represents the pre-trained model parameters, and 𝐴𝐴 and 𝐵𝐵 are the low-rank matrices. Gradi-
ent descent is used to update the parameters of the low-rank matrices 𝐴𝐴 and 𝐵𝐵. 
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2.3 Performance Evaluation 

To evaluate the daylight performance of floor plan images generated by diffusion models, the traditional 
method involves importing images into professional modeling software, establishing geometrical and physical 
models, applying materials, and running simulations. Current image-to-image prediction methods offer a solu-
tion to this problem. Therefore, this study employs the pix2pixHD model, known for its strong performance in 
image-to-image translation, to efficiently evaluate the results generated by the diffusion model. 

2.3.1 Dataset for Training Pix2pixHD 

Daylight simulation was conducted using Ladybug and Honeybee on the Grasshopper platform in Rhino to 
generate image pairs for training the pix2pixHD model. We used the EPW weather file for Shanghai. The 
building geometry features window-to-wall ratios of 0.2 for the north-facing façade and 0.3 for the south-facing 
façade. The simulation parameters conform to the Code for Thermal Design of Civil Buildings (GB50176-
2016)(3) and adhere to standard construction dimensions. Material properties were selected to reflect com-
monly used construction materials, as detailed in Tables 2 and 3. 

Table. 2 Simulation parameters 
Parameters value 

Window to wall ratio(north) 0.2 
Window to wall ratio(south) 0.3 

Windows height 1.8m 
sill level height 0.9m 

Story height 3.3m 
 

Table. 3 material property in daylight simulation model 
Opaque Material Reflectance 

Ceiling 0.6 
Wall 0.5 
Floor 0.3 

Glazing material Transmissivity 
Windows glaze 0.6 

Spatial Daylight Autonomy (sDA) measures the percentage of a space that receives adequate daylight 
throughout the year. According to the Illuminating Engineering Society (IES), sDA300/50% indicates the pro-
portion of points in an area that achieve a horizontal illuminance of at least 300 lx for 50% of occupied hours 
(8 a.m. to 6 p.m.) over a typical meteorological year. The sDA equation is as follows: 

 
𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥/𝑦𝑦% = ∑ 𝑃𝑃(𝑖𝑖)𝑛𝑛

𝑖𝑖
∑ 𝑝𝑝𝑖𝑖𝑛𝑛
𝑖𝑖

∈ [0,1]

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑃𝑃(𝑖𝑖) = �1 ;  𝑖𝑖𝑖𝑖 𝐷𝐷𝐷𝐷 ≥ 𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
0 ;  𝑖𝑖𝑖𝑖 𝐷𝐷𝐷𝐷 ≤ 𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

 (4) 

The sDA standard, as defined by IES Lighting Measurements (LM) 83-12 (7), uses the parameters "sDA 
300,50%" measured from 8 AM to 6 PM over the year. This metric evaluates the daylight performance of a 
space by categorizing it into three classes based on the percentage of the area meeting the sDA criterion, the 
details are listed in Table. 4: 

Table. 4 standard of spatial daylight autonomy 
Level of recom-
mendation 

Minimum target il-
luminance/lx 

Fraction of day-
light hours/% 

Fraction of spaces for 
target level/% 

preferred 

300 50% 

≥75% 
nominally ac-

cepted 55%~75% 

low ≤55% 



  

2.3.2 Model Training of Pix2pixHD 

With the training dataset, we trained a pix2pixHD model to quick predict the daylight performance, which 
consists of two components: a coarse-to-fine generator and multi-scale discriminators. The generator of 
pix2pixHD is called coarse-to-fine generator, which can be decomposed into sub-networks, a global generator 
network 𝐺𝐺1 and a local enhancer 𝐺𝐺2. The global generator network 𝐺𝐺1 is responsible for generating a coarse, 
low-resolution version of images. This network captures the overall structure and global features of the image 
but does not focus on fine details. The output from 𝐺𝐺1 serves as the foundational layer upon which further 
refinements are made. To evaluate the generated images, pix2pixHD employs multi-scale discriminators at 
different scales. Each discriminator is responsible for assessing the realism of the image at a specific resolution, 
ensuring that both local details and the global structure are realistic. 

The authors of Pix2PixHD improved upon the traditional conditional GAN loss ℒ𝐺𝐺𝐺𝐺𝐺𝐺 by incorporating the 
Feature matching loss ℒ𝐹𝐹𝐹𝐹 and perceptual loss ℒ𝑉𝑉𝑉𝑉𝑉𝑉. The complete loss function consists of the following 
equations: 

 ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐺𝐺,𝐷𝐷𝑘𝑘) = ∑ ℒ𝐺𝐺𝐺𝐺𝐺𝐺(𝐺𝐺,𝐷𝐷𝑘𝑘)𝑘𝑘 + 𝜆𝜆𝐹𝐹𝐹𝐹 ∑ ℒ𝐹𝐹𝐹𝐹(𝐺𝐺,𝐷𝐷𝑘𝑘)𝑘𝑘 + 𝜆𝜆𝑉𝑉𝑉𝑉𝑉𝑉ℒ𝑉𝑉𝑉𝑉𝑉𝑉(𝑦𝑦,𝐺𝐺) (5) 
In this study, a total of 300 pairs of images were used for training, of which 80% were used for the training 

set and 20% for the test set. The pix2pixHD model was trained using the Adam optimizer with a learning rate 
of 0.0002, due to the time required per epoch, which spans several minutes, the maximum number of epochs 
was set to 200 to balance performance and computational cost. Both networks were updated at every step using 
loss functions, which guided the model to generate realistic data through iterative optimization. The loss 
weights were set to 𝜆𝜆𝐹𝐹𝐹𝐹 = 𝜆𝜆𝑉𝑉𝑉𝑉𝑉𝑉 = 10. 

2.3.3 Model Evaluation 

To quantitatively determine the optimal epoch, we calculated the Fréchet Inception Distance (FID) scores 
for each epoch. The Fréchet Inception Distance (FID) is a metric used to assess the quality of generated images 
by comparing their statistical properties to those of real images. FID calculates the distance between the feature 
distributions of the generated images and real images, as extracted by an Inception v3 network. Lower FID 
scores indicate that the generated images are more similar to the real images. 

After selecting the optimal model, we evaluate its performance using three metrics: Mean Squared Error 
(MSE), Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index (SSIM). These metrics provide a 
comprehensive evaluation by measuring the pixel-level accuracy, perceptual quality, and structural fidelity of 
the generated images. 

3 Results  

3.1 Training Results of LoRA 

Fig. 3 illustrates the loss curve during LoRA training, spanning 48,000 steps across 10 epochs. A consistent 
downward trend in the loss indicates effective learning and adaptation by the model. The curve shows a steep 
decline in the initial epochs, gradually tapering off in later epochs, suggesting convergence. Minor fluctuations 
in the loss values, due to inherent variability in the training data and the stochastic nature of the AdamW8bit 
optimizer, remained within acceptable limits, demonstrating the stability and robustness of the training process. 
Notably, the loss reached its lowest point at approximately the 40,000th step (step 39,731). Given that each 
epoch consists of 4,800 steps, we selected the 8-th epoch for generating the building floor plan. 
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Fig. 3 Traning loss of LoRA 

3.2 Training Results of Pix2pixHD 

Fig. 4 displays pairs of images at various training epochs for the model. We compared the synthesized images 
from epochs 10, 30, 50, 100, 150, and 200 with their corresponding ground truth images. Starting from epoch 
30, the differences between the synthesized and ground truth images become difficult to distinguish through 
visual inspection. 

 
Fig. 4 Daylight performance prediction using pix2pixHD under different epochs 

shown in Fig. 5, we found that the model reached its lowest FID score of 12.85 at epoch 170. This indicates 
the best performance in terms of image quality and similarity to the ground truth. Consequently, the model 
from epoch 170(170_net_G) was selected for subsequent predictions, ensuring the highest fidelity in generated 
results. 



  

 
Fig. 5 FID score of pix2pixHD model at different epochs 

Table. 5 presents the performance evaluation of the selected model on both the training set and the test set. 
The model shows consistently strong results, with an average SSIM of 0.98 for both the training and test sets, 
approaching the ideal value of 1, which indicates a high level of structural similarity with the ground truth. The 
MSE scores are low, averaging 4.9 on the training set and 4.2 on the test set, reflecting minimal prediction 
error. Correspondingly, the PSNR scores, derived from MSE, are around 40 dB on the test set, signifying high-
quality image generation. 

Table. 5 Performance Metrics (MSE, PSNR, SSIM) on Training and Test Sets 
Dataset Average of MSE Average of PSNR Average of SSIM 

Training set 4.9 41.8 0.98 
Test set 4.2 42.6 0.98 

As shown in Fig. 6, to verify the accuracy of the model, we compare the predicted values generated by 
pix2pixHD with the sDA simulation results, and find that the predicted values deviate from the actual values 
within 5%, with a standard deviation of 2.08, which proves that our trained model is able to predict the daylight 
performance of planar maps well. 

 
Fig. 6 Comparison of sDA of predicted values with ground truth 
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3.3 Floor Plans Generation and Evaluation 

To evaluate the generation model's effectiveness, we produced 4,800 layouts, which were filtered using an 
OpenCV script. As shown in Table. 5, these layouts, each at a resolution of 1024x1024 pixels, were created by 
the diffusion model. After filtering, 89% closely matched the training set features and met key design con-
straints, while the remaining layouts had issues like misplaced windows, duplicated spaces, or incomplete par-
titions. Although post-processing could resolve these errors, this study primarily focuses on the diffusion 
model’s ability to generate plausible layouts for early-stage design. The high success rate underscores the mod-
el's capability to capture essential architectural features, making it a valuable tool for rapid preliminary design 
in building development. 

Table. 1 samples of generated results 
Good case (89%) Bad cases (11%) 

  
The floor plans generated by the diffusion model were assessed for Spatial Daylight Autonomy (sDA) using 

the pix2pixHD model. Most plans fell within the nominally accepted range (55% < sDA ≤ 75%), with 2,787 
cases (65%) meeting this criterion. Conversely, 1,087 plans (25.3%) showed low daylight performance (sDA 
≤ 55%), while only 415 plans (9.7%) achieved preferred performance (sDA > 75%). This distribution high-
lights the significant impact of floor plan layout on daylight performance, emphasizing the potential of auto-
mated generation tools to optimize designs. Fig. 7 shows that as floor area increases, the percentage of plans 
achieving preferred sDA performance decreases, largely due to the complexities of larger layouts. For archi-
tects, automated tools can efficiently generate diverse design options, facilitating refinements based on day-
lighting outcomes. 

 
Fig. 7 sDA distribution of generated result 

To evaluate the impact of spatial layout on daylight performance, representative floor plans were selected 
from four size ranges: [80,90), [90,100), [100,110), and [110,120). "Preferred" plans maximize daylight with 
a horizontal layout featuring north-south windows, while "nominally accepted" plans are more compact, some-
times resulting in inadequate lighting. "Low-performance" plans, with vertically stacked rooms, suffer from 



  

poor daylight due to limited east-west windows. Although higher spatial Daylight Autonomy (sDA) is desira-
ble, achieving over 75% sDA isn't always necessary. Wider, shallower layouts optimize natural light but can 
increase wind loads and reduce insulation, whereas narrower designs may limit lighting and ventilation. Most 
designs strike a moderate balance, though room layout variations can significantly affect performance. This 
basic analysis highlights the need for nuanced approaches that consider specific room requirements, suggesting 
future research should evaluate daylight performance based on occupants' daily routines. 

Table. 2 Representative results of AI generation 

area 80-90 m2 90-100 m2 100-110 m2 110-120 m2 

Preferred 
(sDA≥75%) 

 

 
sDA=83% 

 

 
sDA=82% 

 
sDA=80% 

 
sDA=76% 

Nominally  
accepted 

(75%≥sDA≥55%) 

 
sDA=66% 

 

 
sDA=63% 

 

 
sDA=60% 

 
sDA=58% 

Low 
(sDA≤55%) 

 

 
sDA=51% 

 
sDA=44% 

 

 
sDA=44% 

 
sDA=40% 

4 Discussion 

Architectural design is complex, requiring a balance of multiple stakeholders' needs, and cannot be fully re-
placed by automated layout generation tools. However, these tools excel in providing feedback, design guid-
ance, and optimization during the initial stages by generating various design options and identifying promising 
solutions. Our method generates relatively simple floor plans that offer essential layout information, facilitating 
relevant guidance in the early-stage design. With just a basic text prompt, it simplifies the design process and 
prioritizes early-stage guidance focused on performance and environmental factors. Notably, our approach 
demonstrates significant efficiency, as the pix2pixHD model evaluates performance 267 times faster than tra-
ditional daylight simulation methods. 
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Table. 6 Time costs of floorplan generation and performance evaluation 

Task Test Training 
time 

Calculation time per 
case 

Generation of floor 
plans 

Rhino + Grasshopper N/A 15~30 s 
Diffusion model + 

LoRA 
(1024*1024) 

353 mins 12 s 

Performance evaluation 
Daylight simulation 
(grid size: 0.1) N/A 6 mins 14s (374s) 

Pix2pixHD 423 mins 1.4 s 
 

Despite its advantages, our method has limitations. Improved controllability and reliability in floor plan 
generation are needed, particularly regarding room types, sizes, and finer architectural details like window 
placement. Additionally, the current performance prediction is limited to specific and simple floor plan styles, 
affecting the generalizability of the methodology. 

5 Conclusion and Future Work 

This study integrates diffusion models and GANs to optimize AI-generated architectural floor plans, shifting 
from a form-driven to a performance-driven approach that better meets architects' practical needs. By signifi-
cantly reducing the time for iterative design modifications and performance simulations, the method improves 
efficiency in the early stages of design. 

We implemented performance evaluation using the pix2pixHD model, allowing rapid predictions of day-
light performance. This integration combines AI's creative generation with performance evaluation, providing 
architects with informed design solutions that meet both creative and performance criteria. Our learning-based 
approach offers a remarkable speed advantage over traditional rule-based methods, reducing performance sim-
ulation time from 6 minutes and 14 seconds to just 1.4 seconds—an impressive 267-fold improvement. 

However, our model faces limitations regarding the controllability of generative outputs and the generali-
zability of predictions. Future work will focus on incorporating real-time interaction tools and expanding the 
variety of floor plan types to enhance effectiveness and applicability. 
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